最近,德国科学家实现了铷原子气体超流体态与绝缘态的可逆转换,该成果将在量子计算机研究方面带来重大突

中超02
最近,德国科学家实现了铷原子气体超流体态与绝缘态的可逆转换,该成果将在量子计算机研究方面带来重大突
导读: (1)五  ⅠA  (2)D  (3)D  (4)AB (1)由原子核外的电子排布规律可推知 37 Rb的原子结构示意图为Rb应位于第五周期第ⅠA族。(2)由Rb的原子结构示意图可知②④不正确;又因Na、Rb同主族,根据同主族

(1)五  ⅠA  (2)D  (3)D  (4)AB

(1)由原子核外的电子排布规律可推知 37 Rb的原子

结构示意图为

Rb应位于第五周期第ⅠA族。(2)由Rb的原子结构示意图可知②④不正确;又因Na、Rb同主族,根据同主族元素的性质递变规律知,Rb的金属性比Na强,故①③⑤正确。(3)由反应RbH+H 2 O===RbOH+H 2 ↑可知:水中氢元素的化合价由+1价降低为零价,水作氧化剂,而RbH中的氢元素的化合价升高,由-1价变为零价,RbH作还原剂,H - 核外有两个电子,答案为D。(4)设该合金的相对平均原子质量为 M ,则根据电子得失守恒可得:

 

因 A r (Rb)>25,则另一种碱金属的相对原子质量应小于25,可能为Li或Na,答案为

A、B。

什么是绝对零度?

要了解绝对零度的概念,我们首先得来了解下温度的概。物体温度的宏观表现就是冷、温、烫甚至灼烧与发红、甚至发光,这是物体从冷到热的一个过程。那么温度的微观表现是什么,是什么原因导致了物体宏观温度的升高?

物体微观粒子的热运动的剧烈程度是宏观温度的内在表现。根据麦克斯韦-玻尔兹曼分布,粒子动能越高,物质温度就越高。

因此我们可以用一个模型将微观粒子的运动程度和温度联系起来,分子运动越剧烈,那么温度表现就越高,反之微观粒子运动逐渐趋向于静止,那么它的温度表现就越低!当微观粒子动能低到量子力学的更低点时,即达到绝对零度!

上图就是温度和粒子运动的模型曲线,为什么指向绝对零度(-27315℃)的有一截是虚线?因为我们达不到,只能用虚线表示!

用什么手段可以达到或者接近绝对零度?

生活中有两种降温设备,一种是空调另一种是冰箱,这是我们日常必不可少两种家用电器,前者在夏天给了我们第二次生命,这得感谢威利斯开利,因为是这位大神发明了空调!后者则是我们日常保存食物的重要手段!但这两个都不能达到我们的要求,因为民用冰箱的更低温度更低只能达到-18℃,距离绝对零度差的远了!

介质冷却

实验用的超低温冰箱,可以达到-40℃,甚至-80℃,或者液氮冷却能接近-196℃,或者液氦冷却能接近-2689℃,再往下我们没有合适的媒介了,因为这种用蒸发方式降温的方式,介质的温度必须低于物体的温度,才能使物体的温度无限逼近介质的温度,但它不可能低于介质的温度,比如液氦温度是-2689℃,那么液氦作为介质的设备不可能制造出低于-2689℃的低温。那么我们制造接近绝对零度的 *** 就黔驴技穷了吗?当然不会,我们还有一种流氓的办法!

激光冷却

可能各位对激光的印象都是输出巨大能量不一样,激光也可以用来极端制冷,但却不是我们所谓的日常空调或者冰箱制冷方式,更准确的形容话是一种多普勒效应达到原子冷却技术!因为我们用介质蒸发的方式冷却只能逼近介质的温度,而我们找不到-27315℃的介质,那么换一种方式,让微观粒子的运动接近或者到达静止,不是变相实现绝对零度了么?所以我们形容它是一种流氓办法!

激光制冷的原理:利用多普勒效应达到原子制冷的技术,即在激光传播方向与原子运动相反时候,由于多普勒效应,原子处观测激光频率会比实际频率略高(蓝移),此时控制射入的激光的频率,使其比原子共振频率略低,但因蓝移效应,刚好进入原子吸收光子而达到激发态,当原子从激发态回落基态时,所释放的能量比吸收要略大一些,这种能量“欺骗效应”会导致原子会损失能量!而光子的反向动量会抵消原子的运动,而释放光子则是随机的,因此原子的动量会进一步降低。

2018年5月21日,装载在轨道ATK Antares火箭上的天鹅座飞船搭载了冷原子物理实验室(CAL)从美国宇航局瓦洛普斯基地发射升空。计划在微重力环境下展开冷原子云实验,这是美国喷气推进实验室(JPL)设计制造的一个实验装置,利用的原理就是激光制冷,目标是制造出有史以来宇宙中更低的温度!

CAL(冷原子物理实验室)在国际空间站制造出了-273149999999999℃,只比绝对零度高出0000000000001℃!当然冷原子云实验并不满足于此,未来实验将持续至2020年。

制造出无限接近绝对零度的低温有什么用?

1、物质的第五第六态

我们目前了解的物质形态总共有六种,常见的气态,液态与固态,实现条件比较简单的是等离子态,等离子态是高温下实现的(当然也有低温等离子体),而第五态:玻色-爱因斯坦凝聚态以及第六态费米子凝聚态则是在极低温状态下的量子态。

波色-爱因斯坦凝聚态

是玻色子原子在冷却到接近绝对零度时穿线的超流性物质状态,1995年,麻省理工的沃夫冈·凯特利和科罗拉多大学的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170nK的低温下首次实现了玻色-爱因斯坦凝聚态!玻色-爱因斯坦凝聚态有一种非常特殊的特性,达到此形态的所有原子能凝聚到能量更低的量子态,形成如同一个原子,无法区分彼此的形态!

费米子凝聚态

费米子凝聚态则是与玻色-爱因斯坦凝聚态类似的一种物种形态,不同的是它是接近绝对零度的费米子量子态 *** !费米子凝聚态的形态则刚好与玻色爱因斯坦凝聚态相反,每个都粒子也都在更低能态,但它们各不相同,如同拥挤的人群一样。

玻色子:遵循玻色-爱因斯坦统计的粒子,比如胶子、光子、希格斯粒子、和Z等基本粒子。玻色子不遵守泡利不相容原理,在低温时能产生玻色-爱因斯坦凝聚。

费米子:是遵守费米-狄拉克统计的粒子。费米子包括所有夸克与轻子,任何由奇数个夸克或轻子组成的复合粒子,所有重子与很多种原子与原子核都是费米子。费米子遵守泡利不相容原理!

二、玻色-爱因斯坦凝聚态

这曾经是爱因斯坦在70多年前预言的一种物质形态,随着科学技术的发展,现在人类实现了它,这玩意儿有啥用呢?

这群突然跌落到更低能级玻色子 *** 表现的特性与单个粒子一样,具有完全相同的物理性质这让“没事干”的科学家发现了新大陆:汉诺威大学与UPV/EHU组成联合研究小组,在两个分离空间内的玻色-爱因斯坦凝聚体,实现了量子纠缠!

以往的量子纠缠实验中,对象都是单个量子态。而此次实验对象则是处在玻色-爱因斯坦凝聚态的冷原子云,这种模式跟经典的量子纠缠实验模型相比,冷原子云可以制造出高纠缠态!在需要创建和控制大型纠缠态的 *** 体时,无疑玻色-爱因斯坦凝聚态冷原子云的纠缠具有相当的优势,这可能是未来大规模量子计算机的现实基础!

达到绝对零度后,光的运动方式会怎么样?

假设达到了绝对零度(当然这是一个不可能实现的温度),光会被冻住吗?答案是不会,因为在绝对零度的世界里没有光,如果有光的话就会有能量输入,那么这个系统就无法达到绝对零度!

那么假设无限接近绝对零度,光又会如何呢?

光子是玻色子,在无限接近绝对零度时会达到玻色-爱因斯坦凝聚态,形成冷原子超流体,犹如水银泻地一般?我们比较难想象这种光子超流体状态,但至少以现在的科技并不能实现光子达到玻色-爱因斯坦凝聚态,因为我们冷却原子用的技术就是激光制冷,暂时实现仍然还是原子级别冷原子云实验,也许不久的将来可以实现超流体光!

科幻片《幽冥》剧照

最后来简单介绍下概念很硬核、剧情很紧凑、观赏性很高关于玻色-爱因斯坦凝聚态的科幻片《幽冥》,说的是被某种实验困在在玻色-爱因斯坦凝聚态、半生半死之间的“人形生物”与三角洲特种部队之间战争的反战**,整体来说作为科幻片来看是不错的,但请勿和现实中的玻色-爱因斯坦凝聚态联系起来,因为凡是**很难经得起科学逻辑推敲的,尽情欣赏即可。

用天体物理学家扎文·阿祖马尼安的话来说,当一颗20个太阳大小的恒星死亡时,它就变成了“大多数人从未听说过的最不可思议的物体”——一颗城市大小、密度惊人的中子星。一块乒乓球大小的中子星重量将超过10亿吨。在恒星表面之下,在重力的挤压下,质子和电子相互熔化,形成了大部分的中微子——因此得名。至少,我们是这么想的。这个问题远未解决。天文学家从未近距离看到过中子星,地球上也没有实验室能创造出任何密度接近中子星的物质,所以这些物体的内部结构是太空中更大的谜团之一。在美国宇航局戈达德太空飞行中心工作的阿祖马尼安说:“它们是自然界允许的更高稳定密度的物质,其结构我们还不了解。”它们也是已知的更具强引力的物质形式——只要再增加一点质量,它们就会成为黑洞,而黑洞根本不是物质,而是纯粹的弯曲空间。阿祖马尼安说:“在这个临界点上发生了什么,是我们试图 探索 的。”

关于这个临界值发生了什么,有几种相互矛盾的理论。一些观点认为,中子星实际上只是充满了普通的中子,也许还有一些质子。其他人则提出了更奇怪的可能性。也许中子星内部的中子会进一步溶解成构成它们的粒子,称为夸克和胶子,它们在自由流动的海洋中自由游动。而且有可能这些恒星的内部是由更奇异的物质构成的,比如超级粒子——由更重的“奇怪夸克”表亲组成,而不是普通的“上夸克”和“下夸克”(原子中发现的那种)组成的奇怪粒子。

除了切开一颗中子星并观察它的内部,没有一种简单的 *** 知道这些理论中哪一个是正确的。但是科学家们正在取得进展。地面实验探测到了引力波——由大质量物体加速产生的时空波动——它看起来像是两颗中子星的正面碰撞。这些波携带着撞击前恒星的质量和大小的信息,科学家们利用这些信息对所有中子星的性质和可能的成分设置了新的限制。

线索也来自中子星内部成分探测器,这是2017年6月在国际空间站开始的一项实验观测脉冲星,这是一种高磁性、高速旋转的中子星,能发射出光束。当这些光束经过地球时,我们看到脉冲星每秒闪烁700多次。通过这些实验和其他实验,了解中子星内部物质的前景最终看起来是可能的。如果科学家们能做到这一点,他们不仅能掌握宇宙的一种奇特现象,而且还能掌握物质和引力的基本极限。

超流体的海洋

中子星是在超新星大灾难中形成的,当恒星耗尽燃料并停止在其核心产生能量时,就会发生超新星“大灾难”。突然间,引力没有了阻力,它像活塞一样猛烈地撞击恒星,将外层吹走,并粉碎了核心,而在恒星生命的这个阶段,核心主要是铁。重力是如此之强,以至于几乎可以把原子压碎,把原子核内的电子推到它们与质子融合产生中子为止。圣路易斯华盛顿大学的物理学家Mark Alford说:“铁在每个方向被压缩了10万倍。”“原子的直径从十分之一纳米变成只有几飞米宽的中子团。“这就像把恒星缩小到一个城市街区的大小。(飞米计是纳米的百万分之一,而纳米本身就是一米的十亿分之一。)当恒星坍缩结束时,每一个质子约含有20个中子。石溪大学的天文学家James Lattimer说,它很像一个巨大的原子核,但有一个重要的区别。拉蒂默说:“原子核是通过核相互作用而结合在一起的。”“中子星是由引力结合在一起的。”

1934年,天文学家沃尔特·巴德和弗里茨·兹威基提出中子星的概念,以回答超新星之后可能会留下什么。超新星是他们同时创造的一个术语,指的是在天空中发现的超亮爆炸。英国物理学家詹姆斯·查德威克发现中子才两年。起初,一些科学家对这种极端的天体是否存在持怀疑态度,直到乔斯林·贝尔·伯内尔和她的同事在1967年观测到脉冲星——在接下来的一年里,研究人员确定它们一定是在旋转中子星——这个想法才被广泛接受。

物理学家认为中子星的质量大约是太阳质量的一倍到25倍,它们可能至少由三层组成。外层是一个由氢和氦组成的气体“大气层”,厚几厘米到几米。它漂浮在一公里深的外层“地壳”上,地壳由排列成晶体结构的原子核构成,原子核之间有电子和中子。第三层,构成恒星主体的内层,有点神秘。在这里,原子核被紧紧地塞在原子核物理定律所允许的范围内,它们之间没有分离。当你向核心靠近时,每个原子核都拥有更多的中子。在某一时刻,原子核不能包含更多的中子,所以它们溢出来:现在没有原子核了,只有核子(即中子或质子)。最终在最内层的核心,这些物质也会分解。阿尔福德说:“我们处于一种假设的状态,我们不知道在这种疯狂的压力和密度下会发生什么。”“我们认为可能发生的情况是,中子实际上被压在一起,它们重叠得太厉害,你不能再把它说成是中子流体,而是夸克流体。”

这种液体的形式是一个悬而未决的问题。一种可能性是夸克形成了一种“超流体”,它没有粘性,一旦开始运动,理论上就永远不会停止运动。这种奇怪的物质状态是可能的,因为夸克对其他夸克有亲近感,如果它们被推得足够近,就能形成束缚的“库珀对”。“夸克本身就是费米子——一种自旋量子力学值为半个整数的粒子。当两个夸克配对在一起时,它们就像一个单独的玻色子——一个自旋等于零或一个或另一个整数的粒子。在这种变化之后,粒子遵循新的规则。费米子受泡利不相容原理的约束,即没有两个相同的费米子可以占据相同的状态——但玻色子没有这样的限制。当它们是费米子时,在拥挤的中子星中,夸克被迫以更高的能量叠加在一起。然而,作为玻色子,它们可以保持在更低可能的能量状态(任何粒子的首选位置),并且仍然挤在一起。当它们这样做时,夸克对就形成了超流体。

在核心最密集的部分之外,中子很可能完好无损,中子也可以成对形成超流体。事实上,科学家相当肯定恒星外壳中的中子会这样做。证据来自对脉冲星“故障”的观察,在这些“故障”中,一颗旋转的中子星快速加速。理论学家认为,当恒星作为一个整体的旋转速度与地壳内部超流体的旋转不同步时,就会发生这些小故障。总的来说,恒星的自转自然会随着时间而变慢;而没有摩擦的超流体则没有。当这些速率之间的差异过大时,超流体将角动量传递给地壳。“就像地震一样,”拉蒂默说。“你会打嗝,爆发出能量,自旋频率会在短时间内增加,然后再次稳定下来。”

2011年,拉蒂默和他的同事们表示,他们也在中子星的核心发现了超流体存在的证据,但他承认,这仍有待商榷。为了找到证据,由墨西哥国立自治大学的丹尼·佩奇(Dany Page)领导的拉蒂默团队对仙后座A的x射线观测进行了15年的研究。仙后座A是17世纪首次在地球上出现的超新星残骸。科学家们发现星云中心的脉冲星冷却的速度比传统理论认为的要快。一种解释是,恒星内部的许多中子正在成对形成超流体。这些对偶断裂并重新形成,释放出中微子,导致中子星失去能量并冷却下来。“但是你看,有一颗恒星的年龄和我们看到这个是一样的。再过50年左右,布丁就会证明这一点,那时它应该会开始冷却得更慢,因为一旦超流体形成,就不会再有多余的能量流失了。”

奇怪的夸克

超流体只是中子星神秘门后等待的奇异可能性之一。也有可能它们是稀有的“奇怪夸克”的家园。

夸克有六种,即向上、向下、魅力、奇异、顶部和底部。只有最轻的两种物质,上下都存在于原子中。其他的是如此的巨大和不稳定,以至于它们通常只作为高能粒子碰撞产生的短暂碎片出现在原子加速器中,比如日内瓦附近欧洲核子研究中心的大型强子对撞机。但在中子星密度极高的内部,中子内部的上下夸克有时会转变成奇怪的夸克。(其他不同寻常的夸克——魅力夸克、上夸克和下夸克——是如此之大,以至于它们很可能不会在那里形成。)如果奇怪的夸克出现并继续与其他夸克结合,它们就会产生被称为超子的突变中子。也有可能这些夸克根本不包含在粒子中——它们可能在一种夸克汤中自由漫步。

每一种可能性都应该以可测量的方式改变中子星的大小。用阿祖马尼安的话来说,核心内完好无损的中子会“像弹珠一样,形成坚硬的固体核心”。“固态内核会推动外层,增大整个恒星的体积。另一方面,如果中子溶解在夸克和胶子的混合物中,它们会变成“更软、更软、更小的恒星”,他说。Arzoumanian首席调查员和科学领导更好的实验,旨在确定哪一个选择是真的:好吗? s关键目标是测量(中子星?)质量和半径,将帮助我们挑选或排除某些理论密度问题。

更好的是安装在国际空间站外部的洗衣机大小的盒子。它稳定地监测着散布在天空中的几十颗脉冲星,探测其中的x射线光子。通过测量光子的时间和能量,以及恒星的引力场如何弯曲它们的光,better让科学家计算出一组脉冲星的质量和半径,并对它们进行比较。“如果better发现的恒星质量大致相同,但半径却大不相同,这就意味着发生了一些有趣的事情,”阿尔福德说,“一些新形式的物质,当它出现时,会让恒星收缩。”例如,当中子分裂成夸克和胶子时,就会发生这样的转变。

测量中子星的大小是缩小中子星内部物质可能形态范围的有用 *** 。科学家们曾经认为,任何给定中子星中的一半中子都会变成含有奇怪夸克的超子。理论计算表明,这种富含超子的恒星不能超过太阳质量的15倍。然而,在2010年,由国家射电天文观测台的Paul Demorest领导的天文学家以197太阳质量测量了一颗中子星的质量,消除了许多关于中子星内部的理论。现在物理学家估计,超子不能占中子星的10%以上。

坍缩现场侦探

研究单个中子星能告诉我们很多,但当其中两颗撞击在一起时,我们能学到更多。多年来,望远镜已经探测到被称为伽马射线爆发的光爆炸,研究人员怀疑这些光爆炸来自两颗中子星的碰撞。在2017年8月的引力波探测中,天文学家发现了之一颗被证实的中子星合并。

具体地说,2017年8月17日两个实验中激光干涉引力波天文台,或LIGO和处女座同时检测到两个中子星引力产生涟漪螺旋向对方和合并形成一个中子星或黑洞。这并不是之一次探测到引力波,但之前所有的观测都是由两个黑洞的碰撞造成的。在此之前,科学家从未观测过来自中子恒星的波,这也是望远镜之一次对引力波探测做出反应,同时看到来自天空同一地点的光。光和波一起提供了大量关于撞击发生地点和方式的信息,这对中子星物理学来说是一个福音。“我当时大吃一惊,”拉蒂默谈到这一幸运的发现时说。“我觉得这太好了,简直难以置信。”

天体物理学家将这些波追溯到一对距离地球约13亿光年的中子星。这些波的频率、强度以及它们随时间变化的模式等细节,让研究人员得以估计,每一波约有14个太阳质量,在撞击前半径在11至12公里之间。这些知识将帮助科学家们形成一个理解中子星的基本描述符——它们的状态方程。该方程描述了物质在不同压力和温度下的密度,适用于宇宙中的所有中子星。理论学家们已经提出了几种可能的状态方程的公式,这些公式与中子星内部物质的不同构型相对应,而新的测量结果提供了一个排除某些情况的机会。

例如,中子星半径相对较小的发现令人惊讶。一些理论遇到了困难,当他们试图把这些致密中子星和已知的重恒星(如197倍太阳质量的庞然大物)都纳入同一个基本状态方程时。加州州立大学富勒顿分校的天体物理学家、LIGO极端物质小组的共同***乔斯林·里德说:“它开始让我们的状态方程在这些不同的观测中穿针穿线。”“试图制造致密恒星,以及支持大质量恒星,对这一理论将是一个挑战。这绝对很有趣,而且可能会变得更有趣。”

到目前为止,LIGO和室女座只看到了这一次中子星碰撞,但任何时候都有可能出现另一次这样的观测。里德说:“我在这个领域工作的时间已经够长了,能从一个假设的时代走出来真是太棒了。如果我们能看到引力波,那么我们也许就能做到这一点。”现在我们真的有机会这么做了,而且它还没有过时。”

物质的极限

随着引力波探测器灵敏度的提高,最终的回报将是巨大的。例如,对中子星内部情况的一项测试包括寻找中子星内部任何旋转液体所发出的引力波。如果液体的粘度非常低,或者没有粘性(作为超流体),它可能会开始以一种叫做r模式的模式流动,释放引力波。“这些引力波将比合并时弱得多,”阿尔福德说。“这是物质在静静地晃动,而不是被撕裂。阿尔福德和他的同事们断定,目前正在运行的先进的LIGO探测器将无法看到这些波,但未来对LIGO的升级,以及计划中的天文台,如欧洲正在考虑的地基爱因斯坦望远镜,可能会看到。

破解中子星的案例将给我们提供一幅物质在其难以理解的极限处的图景——一种远离构成我们世界的原子的形式,它拓展了可能性的边界。它可能会将夸克物质、超流体中子和奇异的超子恒星等想象中的奇葩变成现实。理解中子星可以做更多的事情:物理学家更深层次的目标是利用这些被压扁的恒星来解决更大的开放性问题,比如控制核相互作用的定律——质子、中子、夸克和胶子之间复杂的舞蹈——以及更大的谜团——引力的本质。

中子星只是研究核力的一种方式,世界各地的粒子加速器也在同时进行工作,它们就像显微镜一样,可以窥视原子核内部。当更多的核问题被确定下来后,科学家们可以把注意力转向重力。“中子星是引力物理学和核物理的混合物,”麻省理工学院的物理学家Or Hen说。“现在我们正在用中子星作为实验室来理解核物理。但是因为我们在地球上可以接触到原子核,我们最终应该能够很好地限制问题的核方面。然后我们就可以用中子星来理解重力,这是物理学中更大的挑战之一。”

通过爱因斯坦的广义相对论,引力目前被理解为与量子力学理论格格不入。最终,其中一种理论必须改变,而物理学家不知道会是哪一种。“我们会到达那里,”母鸡说,“这是一个非常令人兴奋的前景。”

宇宙时空是一种流体科学家提出了一个匪夷所思的理论,他们说,宇宙时空是一种粘合度为0的流体。那么具体是怎么说的呢

空间是什么它是空洞的,亦或是充斥着某种介质,因此光子,电磁波和其他物质可以从中穿行这是一个科学家们正在努力尝试解答的问题,而现在,一项最新的理论认为时空本身可能是一种“液态的超流体”。而如果最终这一点被证实,它将迫使我们重新审视物理学的标准模型。这一新奇的理论名为“超流体真空理论”(SVT),但其实它也并非完全算是新的理论,因为至少在半个世纪之前便已经有人提出这一理论了。

不过来自意大利国际先进研究院(SISSA)的斯特芬诺·立波拉蒂(Stefano Liberati)教授以及德国慕尼黑大学的科学家卢卡·马可尼(Luca Maccione)是之一批对这种设想中的流体的粘度性质进行研究的科学家。

这也就是说,他们试图了解这种“流体”究竟有多么粘稠,结果是,他们发现这一粘稠度几乎为零。在一篇名为《普朗克尺度下耗散现象的天体物理学约束》的论文中,他们探讨了有关宇宙流体论的相关问题。他们所做的尝试是建立一个模型,将引力与量子论相结合,构建一种“量子引力”。

理解宇宙的一大难题是要了解物质是如何在其中穿行的。想象一下波是如何穿过水体的波会在水中扩散,它利用水作为一种媒介或载体。就我们目前所知的情况,能量的传递需要借助某种媒介,比如说声波的传播需要空气,热的传播需要通过金属等等。那么像电磁波,光子等究竟是如何穿越宇宙的如果那里什么也没有的话

关于空间中的媒介,更为人所熟悉的说法是以太,但证明它的存在或是否定它的存在都将是非常困难的任务。在立波拉蒂和马可尼的研究中,他们提出所谓的以太实际上就是一种超流体。他们表示时空就像是某种“经典”物体,是一种整体。但我们应当将其视作仅仅代表了流体“可见”的一面。

请考虑,我们是如何看待水的我们感觉到它是一种流动的液体,但实际上它是由大量H2O分子构成的整体。他们表示,时空也是类似,拥有自己的H2O分子,尽管对于除此之外的其他性质我们仍然不甚了解。

围绕他们这项理论的核心问题便是自然界的4种基本力,即电磁力,弱相互作用力,强相互作用力以及引力。量子力学可以解释所有这些力,除了引力。

研究人员表示,对于最终统一量子论以及引力的模型中,这种超流体理论或许是一种不错的选择。但要想构建一个流体的模型,你就要知道其粘度,也就是它有多粘稠,而研究人员的估算结果是接近于零。立波拉蒂表示:“如果时空是一种液体,那么我们就必须考虑其粘度以及其他与扩散效应有关的因素,而此前这些都从未得到认真的考虑。”

立波拉蒂指出:“我们可以看到从数百万光年之外的距离上传递过来的光子。而如果时空是一种流体,那么根据我们的计算,它必须是一种超流体。这就意味着它的粘度将会极低,接近于零。”

他说:“我们同样也对其他影响更弱的扩散效应进行了测算,我们预计未来的天体物理观测将会证实这些预测。如果这些得到证实,那么我们将获得支持这一时空新理论的强大证据。在现代天体物理学技术的帮助下,时间正逐渐将量子引力从仅仅是一种猜测性的设想逐渐转变为一种更加现实的可能性。现在是研究引力学的更好时机。”

听起来十分离奇!那么事实是这样的吗宇宙真的如此吗

物质的10种物态

在自然界中,我们看到物质以各种各样的形态存在着:花虫鸟兽、山河湖海、不同肤色的人种、各种美丽的建筑……大到星球宇宙,小到分子、原子、电子等极微小的粒子,真是千姿百态斗奇争艳。大自然自身的发展,造就了物质世界这种绚丽多彩的宏伟场面。物质具体的存在形态有多少,这的确是难以说清的。但是,经过物理学的研究,千姿百态的物质都可以初步归纳为两种基本的存在形态:“实物”和“场”。

“实物”具有的共同特点是:质量集中在某一空间,一般有比较确定的界面(气体的界面虽然模糊,但它又是由一个个实物粒子构成)。本文开头所举的各例都属于实物。

“场”则是看不见摸不着的物质,它可以充满全部空间,它具有“可入性”。例如大家熟知的电磁波,它可以将电台天线发射的信号通过空间传送到千家万户的收音机或电视机。可以概括地说,“场”是实物之间进行相互作用的物质形态。

什么是“物态”呢?日常所知的固态、液态和气态就是三种“物态”。为什么要有“物态”的概念?因为实物的具体形态太多了,将它们归纳一下能否分成较少的几类?这就产生了“物态”的概念。“物态”是按属性划分的实物存在的基本形态,它都表现为大量微小物质粒子作为一个大的整体而存在的 *** 状态。以往人们只知道有固态、液态和气态三种物态,随着科学的发展,在大自然中又发现了多种“物态”。入类迄今知道的“物态”已达10余种之多。

日常生活中最常见的物质形态是固态、液态和气态,从构成来说这类状态都是由分子或原子的 *** 形式决定的。由于分子或原子在这三种物态中运动状况不同,而使我们看到了不同的特征。

1固态

严格地说,物理上的固态应当指“结晶态”,也就是各种各样晶体所具有的状态。最常见的晶体是食盐(化学成份是氯化钠,化学符号是NaCl)。你拿一粒食盐观察(更好是粗制盐),可以看到它由许多立方形晶体构成。如果你到地质博物馆还可以看到许多颜色、形状各异的规则晶体,十分漂亮。物质在固态时的突出特征是有一定的体积和几何形状,在不同方向上物理性质可以不同(称为“各向异性”);有一定的熔点,就是熔化时温度不变。

在固体中,分子或原子有规则地周期性排列着,就像我们全体做操时,人与人之间都等距离地排列一样。每个人在一定位置上运动,就像每个分子或原子在各自固定的位置上作振动一样。我们将晶体的这种结构称为“空间点阵”结构。

2.液态

液体有流动性,把它放在什么形状的容器中它就有什么形状。此外与固体不同,液体还有“各向同性”特点(不同方向上物理性质相同),这是因为,物体由固态变成液态的时候,由于温度的升高使得分子或原子运动剧烈,而不可能再 保持原来的固定位置,于是就产生了流动。但这时分子或原子间的吸引力还比较大,使它们不会分散远离,于是液体仍有一定的体积。实际上,在液体内部许多小的区域仍存在类似晶体的结构——“类晶区”。流动性是“类晶区”彼此间可以移动形成的。我们打个比喻,在柏油路上送行的“车流”,每辆汽车内的人是有固定位置的一个“类晶区”,而车与车之间可以相对运动,这就造成了车队整体的流动。

3.气态

液体加热会变成气态。这时分子或原子运动更剧烈,“类晶区”也不存在了。由于分子或原子间的距离增大,它们之间的引力可以忽略,因此气态时主要表现为分子或原子各自的无规则运动,这导致了我们所知的气体特性:有流动性,没有固定的形状和体积,能自动地充满任何容器;容易压缩;物理性质“各向同性”。

显然,液态是处于固态和气态之间的形态。

4.非晶态——特殊的固态

普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。

这是因为玻璃与晶体有不同的性质和内部结构。

你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。

经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。

严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。

除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。

5.液晶态——结晶态和液态之间的一种形态

“液晶”现在对我们已不陌生,它在电子表、计算器、手机、传呼机、微型电脑和电视机等的文字和图形显示上得到了广泛的应用。

“液晶”这种材料属于有机化合物,迄今人工合成的液晶已达5000多种。

这种材料在一定温度范围内可以处于“液晶态”,就是既具有液体的流动性,又具有晶体在光学性质上的“各向异性”。它对外界因素(如热、电、光、压力等)的微小变化很敏感。我们正是利用这些特性,使它在许多方面得到应用。

上述几种“物态”,在日常条件下我们都可以观察到。但是随着物理学实验技术的进步,在超高温、超低温、超高压等条件下,又发现了一些新“物态”。

6.超高温下的等离子态

这是气体在约几百万度的极高温或在其它粒子强烈碰撞下所呈现出的物态,这时,电子从原子中游离出来而成为自由电子。等离子体就是一种被高度电离的气体,但是它又处于与“气态”不同的“物态”——“等离子态”。

太阳及其它许多恒星是极炽热的星球,它们就是等离子体。宇宙内大部分物质都是等离子体。地球上也有等离子体:高空的电离层、闪电、极光等等。日光灯、水银灯里的电离气体则是人造的等离子体。

7.超高压下的超固态

在140万大气压下,物质的原子就可能被“压碎”。电子全部被“挤出”原子,形成电子气体, *** 的原子核紧密地排列,物质密度极大,这就是超固态。一块乒乓球大小的超固态物质,其质量至少在1000吨以上。

已有充分的根据说明,质量较小的恒星发展到后期阶段的白矮星就处于这种超固态。它的平均密度是水的几万到一亿倍。

8.超高压下的中子态

在更高的温度和压力下,原子核也能被“压碎”。我们知道,原子核由中子和质子组成,在更高的温度和压力下质子吸收电子转化为中子,物质呈现出中子紧密排列的状态,称为“中子态”。

已经确认,中等质量(144~2倍太阳质量)的恒星发展到后期阶段的“中子星”,是一种密度比白矮星还大的星球,它的物态就是“中子态”。

更大质量恒星的后期,理论预言它们将演化为比中子星密度更大的“黑洞”,目前还没有直接的观测证实它的存在。至于 “黑洞”中的超高压作用下物质又呈现什么物态,目前一无所知,有待于今后的观测和研究。

物质在高温、高压下出现了反常的物态,那么在低温、超低温下物质会不会也出现一些特殊的形态呢?下面讲到的两种物态就是这类情况。

9.超导态

超导态是一些物质在超低温下出现的特殊物态。更先发现超导现象的,是荷兰物理学家卡麦林·昂纳斯(1853~1926年)。1911年夏天,他用水银做实验,发现温度降到4173K的时候(约-269℃),水银开始失去电阻。接着他又发现许多材料都又有这种特性:在一定的临界温度(低温)下失去电阻(请阅读“低温和超导研究的进展”专题)。卡麦林·昂纳斯把某些物质在低温条件下表现出电阻等于零的现象称为“超导”。超导体所处的物态就是“超导态”,超导态在高效率输电、磁悬浮高速列车、高精度探测仪器等方面将会给人类带来极大的益处。

超导态的发现,尤其是它奇特的性质,引起全世界的关注,人们纷纷投入了极大的力量研究超导,至今它仍是十分热门的科研课题。目前发现的超导材料主要是一些金属、合金和化合物,已不下几千种,它们各自对应有不同的“临界温度”,目前更高的“临界温度”已达到130K(约零下143摄氏度),各国科学家正在拼命努力向室温(300K或27℃)的临界温度冲刺。

超导态物质的结构如何?目前理论研究还不成熟,有待继续探索。

10.超流态

超流态是一种非常奇特的物理状态,目前所知,这种状态只发生在超低温下的个别物质上。

1937年,前苏联物理学家彼得·列奥尼多维奇·卡皮察(1894~1984年)惊奇地发现,当液态氦的温度降到217K的时候,它就由原来液体的一般流动性突然变化为“超流动性”:它可以无任何阻碍地通过连气体都无法通过的极微小的孔或狭缝(线度约10万分之一厘米),还可以沿着杯壁“爬”出杯口外。我们将具有超流动性的物态称为“超流态”。但是目前只发现低于217K的液态氦有这种物态。超流态下的物质结构,理论也在探索之中。

上面介绍的只是迄今发现的10 种物态,有文献归纳说还存在着更多种类的物态,例如:超离子态、辐射场态、量子场态,限于篇幅,这里就不一一列举了。我们相信,随着科学的发展,我们一定会认识更多的物态,解开更多的谜,并利用它们奇特的性质造福于人类。